Math 1050 A4.3 Exponential & Log	Name
1. Write in Exponential Form: $log_2 128 = 7$	2. Write in Logarithm Form: $(\frac{1}{3})^3 = \frac{1}{27}$
log 10 = 1	$5^0 = 1$
3. Evaluate: log 216	4. Evaluate: $log_2 2^5$
log ₈ 8	log ₃ 1
5. Evaluate: log 5125	6. Evaluate: log ₇ 16, 807
$log_{5\frac{1}{25}}$	log ₈ 1

Jesse invests \$3000 in an account that compounds interest at an annual rate of 5%. The following equation represents Jesse's balance, where $_{A}$ is the final amount after $_{t}$ years.

$$A = 3000 \left(1 + \frac{.05}{12}\right)^{12t}$$

How is the interest on Jesse's account compounded?

- A annually
- (B) monthly
- c quarterly
- weekly

7.

	9. In 2000, they discover that a population of 50 Tigers is decreasing at a rate of 3% every year.
months.	year.

Equation?:

How many will there be in 7 months?

Find when there will be 12,800 cockroaches.

(Use a table, graph or some other method.)

Equation?:

How many tigers will there be in 10 years?

Find the year there will be only 10 tigers, assuming the trend continues. (Use a table, graph or some other method.)

- 10. The function $f(x) = log_{9}x$ is the logarithmic function with base ______. So f(9) = ______, f(1)= ______, f(1/9)= ______, and f(3)= _____.
- 11. The function $y = 20(0.975)^x$ models the intensity of sunlight beneath the surface of the ocean. The output y represents the percent of surface sunlight intensity that reaches a depth of x feet. The model is accurate from about 20 feet to about 600 feet beneath the surface.
 - A. Find the percent of sunlight 50 feet beneath the surface of the ocean.
 - B. Find the percent of sunlight at a depth of 370 feet.

14. Isolate the Log, and then Evaluate $3log_{5}x - 6 = 3$

15. Isolate the Log, and then Evaluate $\frac{1}{4}log_{2}x = 1$

16. Isolate the Log, and then Evaluate $4log_5 x - 40 = -40$	17. Isolate the Log, and then Evaluate $5log_3 x + 30 = 10$
18. Isolate the Log, and then Evaluate $\frac{1}{2}log \ x - 3 = -1$	19. Isolate the Log, and then Evaluate $\frac{1}{4}log \ (5-2x) = 0$
20. Graph the following $f(x) = \frac{x^2 + 5x + 4}{x - 3}$ VA HA x-intercept(s) y-intercept(s) Slant Asy	x
21. Find all zeros then graph: $f(x) = 2x^3 - 8x^2 + 9x - 9$	x