
7. Solve the radical equation algebraically:
$3 \sqrt[3]{x}+5=-1$
8. Solve the radical equation from \#7 graphically:
$3 \sqrt[3]{x}+5=-1$

State the solution:

9. Solve the radical equation algebraically:
$-2 \sqrt{x-4}=-4$
10. Solve the radical equation from \# 9
graphically: $-2 \sqrt{x-4}=-4$

State the solution:

11. Write the following in Exponential Form, then simplify: $4 \sqrt[3]{216 a^{9} b^{18}}$	12. Write the following in Exponential Form, then simplify: $2 \sqrt{100 x^{8} y^{6}}$
13. \quad Which expression has the largest value?	14.
(A) $16^{\frac{3}{2}}$ Which expression is equivalent to $32 x^{\frac{1}{5}} ?$ (B) $27^{\frac{1}{3}}$ (A) $2 \sqrt[5]{x}$ (C) $100^{\frac{1}{2}}$ (B) $32 \sqrt[5]{x}$ (D) $125^{\frac{2}{3}}$ (D) $\frac{321}{5} \sqrt[5]{x}$	

15.

Select all of the expressions equivalent to 24 .
$6 \sqrt{2}$
$(2 \sqrt{6})^{2}$
$\sqrt{\frac{48}{2}}$
$\frac{(4 \sqrt{6})^{2}}{4}$
$(\sqrt{24})^{\frac{1}{2}}$
$\left(24^{\frac{1}{3}}\right)^{3}$
17.

Which equation is equivalent to $3 y^{\frac{1}{3}}=-\frac{1}{x}$?
(A) $y=\sqrt[3]{-\frac{1}{27 x}}$
(B) $y=-\frac{1}{27 x^{3}}$
(C) $y=-\frac{1}{3 x}$
(D) $y=-\frac{1}{x}$
16.

An expression is shown.
$(\sqrt{16})^{\frac{1}{2}}$
Which expression is equivalent?
(A) 2
(B) 4
(C) 8
(D) 16
18.

Which expression is equivalent to $(\sqrt{8})^{\frac{1}{3}}$?
(A) $\sqrt[3]{8}$
(B) $\sqrt[6]{8}$
(C) $\sqrt{512}$
(D) $\sqrt[6]{32678}$
19.
A. Place one number in each box so the simplified expression will be an

integer.
B. Simplify your expression from part A.
20. Find the Surface Area and Volume if the height is 5 m , the length is $3 x \sqrt{3} \mathrm{~m}$, and the width is $x \sqrt{3} \mathrm{~cm}$.

21.

An expression is shown.

$$
\left(\frac{9 y^{4}}{4 w^{2}}\right)^{\frac{1}{2}}
$$

Which expression is equivalent?
(A) $\frac{81 y^{4}}{16 w^{2}}$
(B) $\frac{4.5 y^{4}}{2 w^{2}}$
(C) $\frac{4.5 y^{2}}{2 w}$
(D) $\frac{3 y^{2}}{2 w}$
23. Mike and Peter are running a race on a circular track. The following tables represent their progress. Find the average rate of change for each runner from 2 minutes to 10 minutes.

Mike

min	laps
2	4
5	8
6	10
10	15
12	19

Mike \qquad Peter \qquad

What units should be used to describe the average rate of change?
22.
A. Select the expression(s) that are equivalent to $25^{\frac{3}{2}}$.
B. Put digits from the column on the left into the boxes to show the value of $25^{\frac{3}{2}}$. (You do not necessarily need to use all the boxes.)

0	A.			
1	Dolete			
2				
3		$\sqrt{25^{3}}$	$\sqrt[2]{25^{3}}$	
4				
5				
6		$\sqrt[3]{25^{2}}$	$\sqrt[25]{3^{2}}$	5^{3}
7				
8				
9				

B.

$$
25^{\left(\frac{3}{2}\right)}=
$$

24. Graph and label the following if $f(x)=\sqrt[3]{x}$
a. $2 f(-x)$
b. $3-f(x)$
c. $f(3 x)$
d. $f(x-2)$

\square
